Transfer RNA research addresses a blind spot in understanding of human genes

Biomolecular engineer Todd Lowe has received a $2.7 million grant from the National Institutes of Health to support his lab’s international leadership in transfer RNA research

May 17, 2018
By 

The human genome includes more than 500 genes for transfer RNA (tRNA) molecules, which are essential for making proteins in all living organisms. Scientists have long understood the fundamental role of tRNAs in translating genetic code into proteins, but in recent years they have discovered new and unexpected functions for these molecules, including specialized regulatory roles in the cell sometimes carried out by small fragments of tRNAs.
“It’s a whole new layer of regulation that no one expected. We’re at the stage where people are just starting to realize that tRNA fragments are actually regulatory molecules and are interacting with a wide variety of things in the cell,” said Todd Lowe, professor of biomolecular engineering at UC Santa Cruz.
Recent studies suggest tRNAs and tRNA fragments are involved in cellular processes associated with diseases such as cancer, viral infections, and neurodegenerative disorders.
Lowe’s lab is at the forefront of this burgeoning field. He and his collaborators developed a special RNA sequencing technique (ARM-seq) needed to detect and sequence tRNA fragments in the cells of humans and other organisms. Bioinformatics software Lowe developed as a graduate student to find and annotate tRNA genes in genome sequences is still widely used by researchers and genomics centers, including the U.S. National Center for Biotechnology Information and the European Bioinformatics Institute. His lab also maintains the rapidly growing Genomics tRNA Database used by researchers around the world, and he developed a new system for naming tRNA genes that has been adopted by the Human Gene Nomenclature Committee and other databases.
[ Read More ]

Last modified: Aug 30, 2024