Nanopore sensors for nucleic acid analysis

Abstract:
In the past decade, nanometre-scale pores have been explored as the basis for technologies to analyze and sequence single nucleic acid molecules. Most approaches involve using such a pore to localize single macromolecules and interact with them to garner some information on their composition. Though nanopore sensors cannot yet claim success at deoxyribonucleic acid (DNA) sequencing, nanopore-based technologies offer one of the most promising approaches to single molecule detection and analysis. The majority of experimental work with nanopore detection of nucleic acids has involved the α-haemolysin (alpha-HL) ion channel—a heptameric protein with a ~2 nm diameter inner pore which allows translocation of single-stranded DNA. Analysis of externally induced ion current through the pore during its interaction with DNA can provide information about the DNA molecule, including length and base composition. This review focuses on alpha-HL and its applications to single-molecule detection. Modified alpha-HL and other biological and synthetic pores for macromolecule detection are also discussed, along with a brief summary of relevant theoretical work and numerical modelling of polymer–pore interaction.
Read full research article

Last modified: Aug 01, 2003